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Front formation in an active scalar equation
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We study the formation of thermal fronts in an active scalar equation that is similar to the Euler equation.
For a particular initial condition, an earlier candidate for finite-time blowup, the front forms in a generalized
self-similar way with constant hyperbolicity at the center. The behavior belongs to a class of scenarios for
which finite-time blowup is impossible. A systematic exploration of many different initial conditions reveals
no evidence of singular solutionsS1063-651X99)10107-7

PACS numbds): 47.10+g, 02.60-x

[. INTRODUCTION The velocity in the incompressible Euler equation is given
by a rather similar expression(k) =ik X w/k?, only differ-
There are numerous active scalar equations in fluid dyent by the power ok in the denominator. The vorticity
namics; perhaps none is more familiar than the two-=vxv in the 2D Euler equation also obeys an advection
dimensional Euler equation for an incomprESSible ﬂuid:equation and in 3D evolves according to the same equation
Jwldt+v-Vw=0. The vorticityw=V Xv is advected and as the contour lines of the active scaMr 6 [3,6]. This
at the same time determines the velocity field. Another, geoanalogy between the two-dimensional SQG equation and the
physically relevant, example is provided by the surface begyler equation serves as motivation to study singularity for-
havior of quasigeostrophic flow with uniform interior poten- mation in SQG. Independent of this motivation, SQG de-
tial vorticity on a flat bottom[1,2]. Adiabatic temperature scribes the temperature field in rapidly rotating stratified flu-
variations cause pressure fields that drive winds and at thigs, like large thermal fronts in p|anetary atmospheres and
same time are transported by the wind. The motion of thgceans.
temperature contour lines is similar to the motion of vortex The Organization of the paper is as follows. In Sec. Il we
lines in the three-dimension€dD) Euler equation, but opens  discuss evidence for the absence of a finite-time singularity
the possibility of finite-time singularities even in two dimen- for SQG using initial condition(3). Besides this major con-
sions[3]. The steepening of temperature fronts in surfaceciusion drawn earlief7], the numerical solutions are used to
quasigeostrophic flowSQQG is the topic of this paper. For make several further observations. The local scenario of the

the study of singularities of convection equations, Dombretront steepening is investigated in Sec. Ill and more general
et al. [4] also considered the problem of convection in two-jnitial conditions are explored in Sec. IV.

dimensional porous media that is similar to SQG in scaling
but is not isotropic. They reported a strong gradient growth
of the solution, however, the equation might not display the
strong geometric depletion of nonlinearity present in the Eu- As suggested i18,3], the commonly used initial condi-

Il. ABSENCE OF FINITE-TIME SINGULARITY

ler equation and SQG. tion for studying SQG is

The active scalar of surface quasigeostrophic flow is
given by an advection equation for tipotentia) tempera- A(x,y;0)=sin(x)sin(y)+cogy). 3
ture 6,

All studies in this section and the next use this initial condi-
tion. The first numerical simulations of SQG to study the
possible singularity formatior{8] obtained an empirical
asymptotic fit majV 6|~ 1/(8.25-t)>7, consistent with
where the velocity is determined lsyat each time, but is a finite-time blowup. The work9] argues that the asymptotic
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nonlocal function of if1,2,5]. behavior can equally well be fitted with a double exponential
explexg b(t—ty)]}, ruling out a finite-time blowup. No fitted
vior) A K- values forb andt, have been reported. Although these two
v(r)= f ————dr'evk)=i—0(k). (20  forms can be very close to each other over a certain interval
Ir—r’| K of time, the mathematical implications of the two fits are

tremendously different: one fit predicts a finite-time blowup
The symbolV+ refers to a vector perpendicular to the gra- and the other does not. The blowup scenari¢3}fwas in-
dient, that is, along a contour line.=(x,y) is a two-  vestigated rigorously by CordoHd0], who proved that it
dimensional vector. Since is a convolution integral it can cannot lead to finite-time blowup. Recenfly], we showed
be obtained locally in Fourier variables. numerically that the maximum gradient grows at most
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TABLE I. Chronologically ordered list of numerical results for initial conditi(8).

Year Asymptotic form of maximum gradient Max. resolution Reference
1994 majVv ¢=c/(8.25— t) -7 1024 [8,3]
1997 maxV 6| =explexg b(t—ty) T} 2048 [9]
1998 maxV g|<explexd 0.38¢ —4.1)]} 4096 [7]

double exponentially fast, and obtainedndt, numerically.  the stresses and all four measurements agree with each other

The three major numerical results on this subject are sumand converge with grid resolution and with the other param-

marized in Table I. eters of the numerical scheme. The exponential bound leads
The major issues for estimating the asymptotic behavioto a maximum gradient that grows at most like a double

of the solution numerically are the checking of the resolutionexponential 13] and, therefore, no finite-time singularity.

and the study of suitable quantities: some of them are more

prone to numerical errors than others. We use two numerical IIl. SELF-SIMILAR FRONT EORMATION

methods(pseudospectral and fourth orddrl]) to solve the ) ) . ]

equation. The two methods have different spatial smoothing !t is natural to ask if the evolution of the front is asymp-

and different cutoffs of high modes. For time stepping the ot|ca!ly.se'lf-5|m|lgr. Figure 3 is a first |nd|cat|0n of local

fourth order Runge-Kutta scheme has been applied, since ig€lf-similarity during front formation. This as well as the

linear time step requirement is superior to other standard!lowing analysis is done for the standard initial condition

explicit time stepping schemé&2,11). The velocity field is 3. The scenario is meant Ipcally. For the initial cond|t|0|js

obtained in Fourier space. studied here the symmetncally arrqnged steepest points
There are several parameters in the scheme that shoufiove towards the pointx, ). This point conveniently de-

not influence the result: spatial resolution, temporal resolufineés ourr=0. For the entire subsequent analysis the saddle

tion, and the parameters in the artificial damping. For exat (7, 7) is used rather than the equivalent one at (0,0). The

ample, Fig. 1 shows a convergence test for the spatial errof§ajor conclusions of this section af@ the center has con-

in the maximum gradient o for different grid resolutions. ~Stant Gaussian curvature, afii the front undergoes @en-

The result appears accurate uptte6.4 and under-resolving €ralized self-similar evolution(c) of such a simple form that

would lead, in the short run, to an exaggerated gradienfinite-time blowup is impossible.

Similar convergence or independence tests for the gradient

(and the stretch ratehave been carried out with the size of A. Evolution of hyperbolic saddle

the time step and the parameters for the artificial damping of Figyre 4 shows several time shots of the contour lines in
both methods. Referenc¢?,11] contain further details on he peighborhood of the center point. The initial condition

the f_‘“me”CS- ) ) has a hyperbolic saddle in the center that evolves into a long
Figure 2 demonstrates the rapid growth of the maximumymost parallel ridge at late times.

gradient. The dots are the stretch rate of the contour lines,
which is the logarithmic derivative of the maximum gradient, 12
and it can be equivalently considered as a blowup criterion.
The stretch rate can be independently computed from the
velocity field together with the first and second derivatives of

0 [3]. Agreement of the two provides another demanding

numerical test.

The stretch rate in Fig. 2 shows no tendency to blowup
[7]. Even without the final dip in the curve the stretch rate is
bounded by an exponential. This is determined using two
numerical methods with two independent ways of measuring

max|Vvel
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FIG. 2. The maximum gradierisolid line) is rapidly growing.
FIG. 1. Relative differences in maximum gradient measure-The dots (-, X) are the stretch rate at the maximum gradient cal-
ments for different resolutions. The resolutions 34,2856, 512, culated in two different ways from the same pseudospectral simu-
1024, and 2048 are compared with the highest resolution run of lation and multiplied by 10 for better visibility. The arrows indicate
409€. They have all been done with the fourth order method. a change in grid resolution (53:24096).
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FIG. 3. Self-similarity in a one-dimensional cross section along 70
the x direction. The dashed lines aé§.,;t) at different times {
=4.05, 4.54, 5.03, 5.52, 6.01, 6.50). The full domain is 2 60° |
X 2. The solid lines are the dashed lines spatially squeezed. They 50 |
match each other over a wide region, including the steepest points.
a0
To measure the change in geometry we consider the flat a0 |
center of the hyperbolic saddle. The Gaussian curvature
and the mean curvatuité of a surface are given by 200 |
5 10°
. exxeyy_ exy
(14 62+ 622 % 1 2 3 4 5 6
x T Uy t
2 _ 2
H= (1+6,) bxx 2‘9><6ye><y+(1+ ay) Oyy (4) FIG. 5. (a) Curvatures at the center of the domain. The dots
2(1+ 9)2(_1- 95)3/2 ' (triangles are\ _, which suffer from numerical cancellation errors

at late timegnot plotted. The solid line is— 1/\ , , which has to be
identical tox_ for all times. Since tang/2)=\ _ this shows the
closing of the saddle angléh) The angles of the hyperbolic saddle
lines with respect to th& axis. The difference between these two
angles isB.

The two principal curvaturea , and A_, which are the
inverse of the two radii of curvature, are obtained frém

) ;
= : =\, A_,H=N,+\_. The angles of the hyperbolic saddle is
: | determined by ta{B/2)=—N_/\, .
The Gaussian curvature at the center of the domain, or
equivalently at (0,0), always remainsl. This can be de-
rived in the following way: @ is symmetric around (0,0),

henceV #(0,0;t)=0 andv(0,0;t)=0 for all times. Taking
successive spatial derivatives of Ed) yields

. 1
\w IK/gt=—2KV-v=0. ®)

This says that there will always remain a hyperbolic saddle
at the center. It also connects the two principal curvatures at
the center point with each other, so that flattening in one
direction corresponds to steepening in the perpendicular di-
rection.

Figure 5a) shows the two principal curvatures as mea-
sured from numerical solutions. When the second derivatives
are highK is the difference of two large numbers. Thus, a
large numerical cancellation effect occurs in calculating
small Gaussian curvatures. Because of this cancellation ef-
fect \_ cannot be measured for long, but. has no such

FIG. 4. Contour plots of the neighborhood around the centerProblem. The two are connected wik=\ . \_=—1. The
The length of the square is/2; the entire domain has2 The  data in Fig. $a) clearly show the flattening of the front in
plots are shown in constant intervals of about 0.61 time units (ONe direction while the curvature in the other direction in-

=0,0.61...,5.52). Two fronts with a hyperbolic saddle in be- creases. The saddle angle closes, but never reaches zero.
tween approach each other. The breakup of the center line is an (Assuming the solution is locally well approximated by a
artifact of the contour plotting algorithm. hyperboloid, one can easily convince oneself that there is no
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singular motion in the flat direction of the saddle. Suppose 1.2 - .
we choose they axis along the ridge. The gradient within TTTTALIETEEs ittt
the saddle, a small distangeaway from the center, will ! b;;m;m“
be of orderfy,y?/ By~ —\_ylB~—N_N y=\—Ky=y, 08 | :
which is small. So there are no high gradients formed below
the saddle point. 06 1

At late time the gradient growth is dominated by inward 04 _ ey
moving almost parallel contour lines, not the closing motion cas®’
of the saddle. The speed of the inward moving parallel con- 02} b12MMHM“HHM&
tour lines can be measured, for instance, from fits like the | g
one necessary to produce Fig. 3. Unfortunately, the time in- 0 [eeerseeeriil SR
terval over which this motion occurs in the simulations is too 02 . . . . .
small to allow any reliable asymptotic fit, but the inward 0 1 2 3 4 5
velocity certainly increases with time. The two fronts, mov- !
ing towards each other, squeeze in between them a thin 0 ; . ; . .
saddle. In between the tiny angle of the saddle there is no I |
notable gradient. oot 1 JERRSIRTIPeeetEiiing

A quantity not captured in curvature measurements is '
given in Fig. §b) in terms of the angle of the two major axes I b21
of the hyperbolas with respect to the horizontal axis. Neither 002 f, ) 1
of them comes completely to rest. If one of them would - -
come to complete rest and if the relative motion to neighbor- 0 1 2 3 4 5
ing contours is not singular then the scenario would be ex- '
actly described by a theorem of Cordo[EQ]. It will be FIG. 6. The four coefficients of the matrR that describe lo-
treated in more detail below. What we observe is a slightally the generalized self-similar motion of the conto(a) The
variation of this scenario. differential B(t,t — At) with At=0.12 in a rotated basis. The error

bars are from different fit parameters as described in the Appendix.
B. Self-similarity ansatz (b) offers an enlarged view of the coefficiemy; .

Self-similarity would mean that the solution at a later time 1, off-diagonalb,,, however, appears to pass asymptoti-
can be obtained by spatial rescaling of the solution at aRally through zero as is evident from Fig(bé.

earlier tirrInT_. For a ger}eralizgd self-similar scenario we allow Unfortunately, the available numerics does not reach far
a general linear transformation enough in time to reveal the asymptotic formBt,t,), and
0(r:t)= 0(B(t,to)r to). 6 we will hence not present integration of the datg in Fig. 6. At
(r;H)=6(B(L,t)r;to) © any rate, deB=1 reduces the number of functions that de-
B(t,t,) is an invertible 2<2 matrix that may blowup in fi- scribe the front motion close to the center from 4 to 3.
nite time.

The matrix of second derivatives C. Comparison with proposed scenarios
P 0 For some simple contour and time evolutions it can
:( XX xy) (7)  be proven there is no local singularity in finite tifted]. The
Oyx  Oyy exact conditions follow.

o (1) There is a nondegenerate critical point, that is, there is
at the center point is given by (t)=BTA(0)B, so that the an invertible, symmetric matrixA such that V 6(r;to)

constant Gaussian curvature detenforces deB=1. The  =)(r,t;)A(to)r. (A is again the matrix of second deriva-
alternative deB= —1 is clearly impossible. tives at the center.

We can obtain a fit for the matri from the numerical  (2) ||B||><C]||BTAB||. If this condition is valid the sce-
solution. The details of this fitting procedure can be found innario will be called “proper.”
the Appendix. The measured coefficientsBoére plotted in A proper, nondegenerate generalized self-similar blowup

Fig. 6. In the first graplB(t+ At,t) is shown in a basis with  cannot happen in finite time for the active scalar. The maxi-
one axis along the “final” orientation of the ridgéixed in  mum gradient is in this case bounded by a double exponen-
time, orthonormal There is no indication of such a fixed tial [14].

asymptotic orientation, but it is changing only slowly at late  The first condition is fulfilled because d&t=—1 for all
times. The motion is self-similar at the beginning and at lateimes. For the initial contour

times but the fitting ceases to converge for times around

1.3-2.3, indicating no self-similarity. It is a transition from 0 1

one kind of self-similarity to another. The determinBds 1 1)

close to the one investigated by Corddia] where

b b The right hand side of the second conditi@j|BTAB]|
:< 1 12>. =C||A(t)|| and is independent of the reference titge In
0 bx the supremum norfjA (t)||=|\ . (t)|. The left hand side of
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FIG. 7. Direct verification of the “properness” of the self-
similarity ansat4|B"B||/||BTAB||<C. |
condition(2) changes under a different choicetgfonly by
a factor. A direct verification of conditiof®) (with ty=0) is . . . . . \
shown in Fig. 7. The special cancellation necessary to render 0 1 2 3 4 5 6 7
condition (2) invalid does not happen. The self-similarity t

ansatz is indeed proper and nondegenerate, that is, the maxi-
mum gradient growglocally) at most like a double exponen-
tial. (Here a general constant is allowed in front, unlike the
numerical fit proposed for the growjh.

Close to the saddle poiné, is constant along hyperbolas.
The coefficients of the hyperbolas are associated with the
coefficients of theB matrix. For the scenario treated [ih0]

FIG. 8. Some rapidly growing gradients for different initial data.
The maximum gradient on the ordinate is plotted on a double loga-
rithmic scale. None, however, seems to evolve faster than a double
exponential. The dashed line is for the standard initial condition.

shown in Fig. 8. None of the initial conditions tried revealed
signs for a finite-time blowup.

2 (8) Fronts cause sudden temperature changes and wind jets. It
is of geophysical relevance to understand under what condi-
tions particularly steep thermal fronts form. Looking at tem-

An arbitrary smooth rescaling of theandy axes would be perature fields for initial conditions like the ones for Fig. 8

allowed, but this is unnecessary given the Gaussian curvatughows that rapid growth is not at all restricted to double

is —1. The form(8) is preserved under a spatial transforma-fronts around hyperbolic saddles. Single fronts and fronts
tion r’=Br of the form close to parabolic points are also among them.

a(t
C=xy+ %y

B= bll b12
o aby) V. CONCLUSION

In one numerical solution with rapidly growing gradients
IV. OTHER INITIAL CONDITIONS the front forms in a generalized self-similar way around a
, . L point of constant Gaussian curvature. As a result thereof, the
All _numerical work on singularities in SQG S0 far ¢ontour motion is locally described by at most three func-
[8,3,15,9,7 has dealt with one initial conditio8). In a sys- yjons of time. A search over other initial dataith periodic
tematic search for singularities we used a Fourier eXpansiof), ndary conditionsbrought no new candidate for singular-
of the form ity formation. Obviously one is led to conjecture that SQG
has no finite-time singularities. Approximately double expo-

2
. . nential growth is found frequently with various front geom-
0(x,y;0)=m;:() [aﬁnlr),sm(mx)sm(ny) etries. g q y 9

+a) sinmx)cogny) +ald) cogmx)sin(ny)

+a$§r)1 cogmx)cogny)], 9) ACKNOWLEDGMENTS
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APPENDIX: NUMERICAL FIT contour to itself after a back and forth transformation. This
FOR SELF-SIMILARITY ANSATZ evidence for self-similarity is complemented by visual
checks of the transformation.

If the motion is locally self-similaB also retrieves the
second derivatives at the center point, which serves as addi-

We can obtain a fit for the matri8 by matchingé at a
given timet to a spatially distorted at a later time,0(r;t
+At)=0(B(t+At,t)r;t). The fitting is done by minimizing > : !
S,y 00y t+ A — B(B(X,y);)|w(x,y) as a function of tional check on the numerics. Also the constraint Bietl

the four matrix elements d8. The weighting functiow is ~ €an be applied to replace one coefficient. Larger time inter-
chosen to decay away from zero likgr)=W/|r|—1. Wis vals At have to leave the integrated result unchanged. For
the maximum width of the domain considered for fittisgy the error bars in Fig. 6 the following variations are under-
W=~0.3).w is set to zero wher(x,y)>—0.65 (the center taken: W=0.2, 0.3, 0.4, the weighting function to the first
point is atd= —1). Interpolation of the distorted grid back to and 3/2 power, cutoff ot at —0.65 and—0.7. The deter-
the uniform grid is done by bilinear interpolatipm6]. minant constraint has been used to replace the first coeffi-
The errors in this fitting are about the same as fitting thecient. This replacement reduces the error bars at late times.
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