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Front formation in an active scalar equation
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We study the formation of thermal fronts in an active scalar equation that is similar to the Euler equation.
For a particular initial condition, an earlier candidate for finite-time blowup, the front forms in a generalized
self-similar way with constant hyperbolicity at the center. The behavior belongs to a class of scenarios for
which finite-time blowup is impossible. A systematic exploration of many different initial conditions reveals
no evidence of singular solutions.@S1063-651X~99!10107-7#

PACS number~s!: 47.10.1g, 02.60.2x
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I. INTRODUCTION

There are numerous active scalar equations in fluid
namics; perhaps none is more familiar than the tw
dimensional Euler equation for an incompressible flu
]v/]t1v•“v50. The vorticityv5“3v is advected and
at the same time determines the velocity field. Another, g
physically relevant, example is provided by the surface
havior of quasigeostrophic flow with uniform interior pote
tial vorticity on a flat bottom@1,2#. Adiabatic temperature
variations cause pressure fields that drive winds and at
same time are transported by the wind. The motion of
temperature contour lines is similar to the motion of vort
lines in the three-dimensional~3D! Euler equation, but open
the possibility of finite-time singularities even in two dime
sions @3#. The steepening of temperature fronts in surfa
quasigeostrophic flow~SQG! is the topic of this paper. Fo
the study of singularities of convection equations, Domb
et al. @4# also considered the problem of convection in tw
dimensional porous media that is similar to SQG in scal
but is not isotropic. They reported a strong gradient grow
of the solution, however, the equation might not display
strong geometric depletion of nonlinearity present in the E
ler equation and SQG.

The active scalar of surface quasigeostrophic flow
given by an advection equation for the~potential! tempera-
ture u,

]u

]t
1v•“u50, ~1!

where the velocity is determined byu at each time, but is a
nonlocal function of it@1,2,5#.

v~r !5E “

'u~r 8!

ur 2r 8u
dr8⇔ v̂~k!5 i

k'

uku
û~k!. ~2!

The symbol“' refers to a vector perpendicular to the gr
dient, that is, along a contour line.r 5(x,y) is a two-
dimensional vector. Sincev is a convolution integral it can
be obtained locally in Fourier variables.
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The velocity in the incompressible Euler equation is giv
by a rather similar expressionv̂(k)5 ik3v̂/k2, only differ-
ent by the power ofk in the denominator. The vorticityv
5“3v in the 2D Euler equation also obeys an advect
equation and in 3D evolves according to the same equa
as the contour lines of the active scalar“

'u @3,6#. This
analogy between the two-dimensional SQG equation and
Euler equation serves as motivation to study singularity f
mation in SQG. Independent of this motivation, SQG d
scribes the temperature field in rapidly rotating stratified fl
ids, like large thermal fronts in planetary atmospheres a
oceans.

The organization of the paper is as follows. In Sec. II w
discuss evidence for the absence of a finite-time singula
for SQG using initial condition~3!. Besides this major con
clusion drawn earlier@7#, the numerical solutions are used
make several further observations. The local scenario of
front steepening is investigated in Sec. III and more gene
initial conditions are explored in Sec. IV.

II. ABSENCE OF FINITE-TIME SINGULARITY

As suggested in@8,3#, the commonly used initial condi
tion for studying SQG is

u~x,y;0!5sin~x!sin~y!1cos~y!. ~3!

All studies in this section and the next use this initial con
tion. The first numerical simulations of SQG to study t
possible singularity formation@8# obtained an empirica
asymptotic fit maxu“uu;1/(8.252t)1.7, consistent with
finite-time blowup. The work@9# argues that the asymptoti
behavior can equally well be fitted with a double exponen
exp$exp@b(t2t0)#%, ruling out a finite-time blowup. No fitted
values forb and t0 have been reported. Although these tw
forms can be very close to each other over a certain inte
of time, the mathematical implications of the two fits a
tremendously different: one fit predicts a finite-time blow
and the other does not. The blowup scenario of@3# was in-
vestigated rigorously by Cordoba@10#, who proved that it
cannot lead to finite-time blowup. Recently@7#, we showed
numerically that the maximum gradient grows at mo
2858 © 1999 The American Physical Society
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TABLE I. Chronologically ordered list of numerical results for initial condition~3!.

Year Asymptotic form of maximum gradient Max. resolution Referenc

1994 maxu“uu5c/(8.252t)1.7 10242 @8,3#
1997 maxu“uu5exp$exp@b(t2t0)#% 20482 @9#

1998 maxu“uu<exp$exp@0.38(t24.1)#% 40962 @7#
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double exponentially fast, and obtainedb andt0 numerically.
The three major numerical results on this subject are s
marized in Table I.

The major issues for estimating the asymptotic behav
of the solution numerically are the checking of the resolut
and the study of suitable quantities: some of them are m
prone to numerical errors than others. We use two numer
methods~pseudospectral and fourth order@11#! to solve the
equation. The two methods have different spatial smooth
and different cutoffs of high modes. For time stepping t
fourth order Runge-Kutta scheme has been applied, sinc
linear time step requirement is superior to other stand
explicit time stepping schemes@12,11#. The velocity field is
obtained in Fourier space.

There are several parameters in the scheme that sh
not influence the result: spatial resolution, temporal reso
tion, and the parameters in the artificial damping. For
ample, Fig. 1 shows a convergence test for the spatial er
in the maximum gradient ofu for different grid resolutions.
The result appears accurate up tot'6.4 and under-resolving
would lead, in the short run, to an exaggerated gradi
Similar convergence or independence tests for the grad
~and the stretch rate! have been carried out with the size
the time step and the parameters for the artificial dampin
both methods. References@7,11# contain further details on
the numerics.

Figure 2 demonstrates the rapid growth of the maxim
gradient. The dots are the stretch rate of the contour lin
which is the logarithmic derivative of the maximum gradie
and it can be equivalently considered as a blowup criter
The stretch rate can be independently computed from
velocity field together with the first and second derivatives
u @3#. Agreement of the two provides another demand
numerical test.

The stretch rate in Fig. 2 shows no tendency to blow
@7#. Even without the final dip in the curve the stretch rate
bounded by an exponential. This is determined using
numerical methods with two independent ways of measu

FIG. 1. Relative differences in maximum gradient measu
ments for different resolutions. The resolutions 1282, 2562, 5122,
10242, and 20482 are compared with the highest resolution run
40962. They have all been done with the fourth order method.
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the stresses and all four measurements agree with each
and converge with grid resolution and with the other para
eters of the numerical scheme. The exponential bound le
to a maximum gradient that grows at most like a dou
exponential@13# and, therefore, no finite-time singularity.

III. SELF-SIMILAR FRONT FORMATION

It is natural to ask if the evolution of the front is asym
totically self-similar. Figure 3 is a first indication of loca
self-similarity during front formation. This as well as th
following analysis is done for the standard initial conditio
~3!. The scenario is meant locally. For the initial conditio
studied here the symmetrically arranged steepest po
move towards the point (p,p). This point conveniently de-
fines ourr 50. For the entire subsequent analysis the sad
at (p,p) is used rather than the equivalent one at (0,0). T
major conclusions of this section are~a! the center has con
stant Gaussian curvature, and~b! the front undergoes a~gen-
eralized! self-similar evolution~c! of such a simple form tha
finite-time blowup is impossible.

A. Evolution of hyperbolic saddle

Figure 4 shows several time shots of the contour lines
the neighborhood of the center point. The initial conditi
has a hyperbolic saddle in the center that evolves into a l
almost parallel ridge at late times.

-
FIG. 2. The maximum gradient~solid line! is rapidly growing.

The dots (1,3) are the stretch rate at the maximum gradient c
culated in two different ways from the same pseudospectral si
lation and multiplied by 10 for better visibility. The arrows indica
a change in grid resolution (5122–40962).
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To measure the change in geometry we consider the
center of the hyperbolic saddle. The Gaussian curvaturK
and the mean curvatureH of a surface are given by

K5
uxxuyy2uxy

2

~11ux
21uy

2!2
,

H5
~11ux

2!uxx22uxuyuxy1~11uy
2!uyy

2~11ux
21uy

2!3/2
. ~4!

The two principal curvaturesl1 and l2 , which are the
inverse of the two radii of curvature, are obtained fromK

FIG. 3. Self-similarity in a one-dimensional cross section alo
the x direction. The dashed lines areu(.,p;t) at different times (t
54.05, 4.54, 5.03, 5.52, 6.01, 6.50). The full domain is 2p
32p. The solid lines are the dashed lines spatially squeezed. T
match each other over a wide region, including the steepest po

FIG. 4. Contour plots of the neighborhood around the cen
The length of the square isp/2; the entire domain has 2p. The
plots are shown in constant intervals of about 0.61 time unitst
50,0.61, . . . ,5.52). Two fronts with a hyperbolic saddle in be
tween approach each other. The breakup of the center line i
artifact of the contour plotting algorithm.
at

5l1l2 ,H5l11l2 . The angleb of the hyperbolic saddle is
determined by tan2(b/2)52l2 /l1 .

The Gaussian curvature at the center of the domain
equivalently at (0,0), always remains21. This can be de-
rived in the following way:u is symmetric around (0,0)
hence“u(0,0;t)50 andv(0,0;t)50 for all times. Taking
successive spatial derivatives of Eq.~1! yields

]K/]t522K“•v50. ~5!

This says that there will always remain a hyperbolic sad
at the center. It also connects the two principal curvature
the center point with each other, so that flattening in o
direction corresponds to steepening in the perpendicular
rection.

Figure 5~a! shows the two principal curvatures as me
sured from numerical solutions. When the second derivati
are highK is the difference of two large numbers. Thus,
large numerical cancellation effect occurs in calculati
small Gaussian curvatures. Because of this cancellation
fect l2 cannot be measured for long, butl1 has no such
problem. The two are connected withK5l1l2521. The
data in Fig. 5~a! clearly show the flattening of the front in
one direction while the curvature in the other direction
creases. The saddle angle closes, but never reaches ze

~Assuming the solution is locally well approximated by
hyperboloid, one can easily convince oneself that there is

g

ey
ts.
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FIG. 5. ~a! Curvatures at the center of the domain. The d
~triangles! arel2, which suffer from numerical cancellation error
at late times~not plotted!. The solid line is21/l1 , which has to be
identical tol2 for all times. Since tan(b/2)5l2 this shows the
closing of the saddle angle.~b! The angles of the hyperbolic sadd
lines with respect to thex axis. The difference between these tw
angles isb.
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singular motion in the flat direction of the saddle. Suppo
we choose they axis along the ridge. The gradient withi
the saddle, a small distancey away from the center, will
be of orderuyyy

2/by;2l2y/b;A2l2l1y5A2Ky5y,
which is small. So there are no high gradients formed be
the saddle point.!

At late time the gradient growth is dominated by inwa
moving almost parallel contour lines, not the closing moti
of the saddle. The speed of the inward moving parallel c
tour lines can be measured, for instance, from fits like
one necessary to produce Fig. 3. Unfortunately, the time
terval over which this motion occurs in the simulations is t
small to allow any reliable asymptotic fit, but the inwa
velocity certainly increases with time. The two fronts, mo
ing towards each other, squeeze in between them a
saddle. In between the tiny angle of the saddle there is
notable gradient.

A quantity not captured in curvature measurements
given in Fig. 5~b! in terms of the angle of the two major axe
of the hyperbolas with respect to the horizontal axis. Neit
of them comes completely to rest. If one of them wou
come to complete rest and if the relative motion to neighb
ing contours is not singular then the scenario would be
actly described by a theorem of Cordoba@10#. It will be
treated in more detail below. What we observe is a sli
variation of this scenario.

B. Self-similarity ansatz

Self-similarity would mean that the solution at a later tim
can be obtained by spatial rescaling of the solution at
earlier time. For a generalized self-similar scenario we all
a general linear transformation

u~r ;t !5u„B~ t,t0!r ;t0…. ~6!

B(t,t0) is an invertible 232 matrix that may blowup in fi-
nite time.

The matrix of second derivatives

L5S uxx uxy

uyx uyy
D ~7!

at the center point is given byL(t)5BTL(0)B, so that the
constant Gaussian curvature detL enforces detB51. The
alternative detB521 is clearly impossible.

We can obtain a fit for the matrixB from the numerical
solution. The details of this fitting procedure can be found
the Appendix. The measured coefficients ofB are plotted in
Fig. 6. In the first graphB(t1Dt,t) is shown in a basis with
one axis along the ‘‘final’’ orientation of the ridge~fixed in
time, orthonormal!. There is no indication of such a fixe
asymptotic orientation, but it is changing only slowly at la
times. The motion is self-similar at the beginning and at l
times but the fitting ceases to converge for times aro
1.3–2.3, indicating no self-similarity. It is a transition fro
one kind of self-similarity to another. The determinedB is
close to the one investigated by Cordoba@10# where

B5S b11 b12

0 b22
D .
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The off-diagonalb21, however, appears to pass asympto
cally through zero as is evident from Fig. 6~b!.

Unfortunately, the available numerics does not reach
enough in time to reveal the asymptotic form ofB(t,t0), and
we will hence not present integration of the data in Fig. 6.
any rate, detB51 reduces the number of functions that d
scribe the front motion close to the center from 4 to 3.

C. Comparison with proposed scenarios

For some simple contoursu and time evolutionsB it can
be proven there is no local singularity in finite time@14#. The
exact conditions follow.

~1! There is a nondegenerate critical point, that is, ther
an invertible, symmetric matrixL such that “u(r ;t0)
5l(r ,t0)L(t0)r . (L is again the matrix of second deriva
tives at the center.!

~2! uuBuu2<CuuBTLBuu. If this condition is valid the sce-
nario will be called ‘‘proper.’’

A proper, nondegenerate generalized self-similar blow
cannot happen in finite time for the active scalar. The ma
mum gradient is in this case bounded by a double expon
tial @14#.

The first condition is fulfilled because detL521 for all
times. For the initial contour

L5S 0 1

1 1D .

The right hand side of the second conditionCuuBTLBuu
5CuuL(t)uu and is independent of the reference timet0. In
the supremum normuuL(t)uu5ul1(t)u. The left hand side of

FIG. 6. The four coefficients of the matrixB that describe lo-
cally the generalized self-similar motion of the contour.~a! The
differential B(t,t2Dt) with Dt'0.12 in a rotated basis. The erro
bars are from different fit parameters as described in the Appen
~b! offers an enlarged view of the coefficientb21.
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condition ~2! changes under a different choice oft0 only by
a factor. A direct verification of condition~2! ~with t050) is
shown in Fig. 7. The special cancellation necessary to ren
condition ~2! invalid does not happen. The self-similari
ansatz is indeed proper and nondegenerate, that is, the m
mum gradient grows~locally! at most like a double exponen
tial. ~Here a general constant is allowed in front, unlike t
numerical fit proposed for the growth.!

Close to the saddle point,u is constant along hyperbolas
The coefficients of the hyperbolas are associated with
coefficients of theB matrix. For the scenario treated in@10#

C5xy1
a~ t !

2
y2. ~8!

An arbitrary smooth rescaling of thex andy axes would be
allowed, but this is unnecessary given the Gaussian curva
is 21. The form~8! is preserved under a spatial transform
tion r 85Br of the form

B5S b11 b12

0 1/b11
D .

IV. OTHER INITIAL CONDITIONS

All numerical work on singularities in SQG so fa
@8,3,15,9,7# has dealt with one initial condition~3!. In a sys-
tematic search for singularities we used a Fourier expan
of the form

u~x,y;0!5 (
m,n50

2

@amn
(1) sin~mx!sin~ny!

1amn
(2) sin~mx!cos~ny!1amn

(3) cos~mx!sin~ny!

1amn
(4) cos~mx!cos~ny!#, ~9!

with 24 independent coefficients as initial data. For so
searches many of these coefficients have been set to
The others are chosen randomly between21 and11 ~or a
smaller interval!. Hundreds of initial data are picked and ru
on a coarse grid. The most promising candidates, judged
whether the maximum gradient seems to exceed a do
exponential or not, are picked out and run on a refined g
A sample collection of some of these promising candidate

FIG. 7. Direct verification of the ‘‘properness’’ of the sel
similarity ansatzuuBTBuu/uuBTLBuu<C.
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shown in Fig. 8. None of the initial conditions tried reveal
signs for a finite-time blowup.

Fronts cause sudden temperature changes and wind je
is of geophysical relevance to understand under what co
tions particularly steep thermal fronts form. Looking at tem
perature fields for initial conditions like the ones for Fig.
shows that rapid growth is not at all restricted to doub
fronts around hyperbolic saddles. Single fronts and fro
close to parabolic points are also among them.

V. CONCLUSION

In one numerical solution with rapidly growing gradien
the front forms in a generalized self-similar way around
point of constant Gaussian curvature. As a result thereof,
contour motion is locally described by at most three fun
tions of time. A search over other initial data~with periodic
boundary conditions! brought no new candidate for singula
ity formation. Obviously one is led to conjecture that SQ
has no finite-time singularities. Approximately double exp
nential growth is found frequently with various front geom
etries.
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FIG. 8. Some rapidly growing gradients for different initial dat
The maximum gradient on the ordinate is plotted on a double lo
rithmic scale. None, however, seems to evolve faster than a do
exponential. The dashed line is for the standard initial condition
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APPENDIX: NUMERICAL FIT
FOR SELF-SIMILARITY ANSATZ

We can obtain a fit for the matrixB by matchingu at a
given time t to a spatially distortedu at a later time,u(r ;t
1Dt)5u„B(t1Dt,t)r ;t…. The fitting is done by minimizing
(x,yuu(x,y;t1Dt)2u„B(x,y);t…uw(x,y) as a function of
the four matrix elements ofB. The weighting functionw is
chosen to decay away from zero likew(r )5W/ur u21. W is
the maximum width of the domain considered for fitting~say
W'0.3). w is set to zero whenu(x,y).20.65 ~the center
point is atu521). Interpolation of the distorted grid back t
the uniform grid is done by bilinear interpolation@16#.

The errors in this fitting are about the same as fitting
lu
e

contour to itself after a back and forth transformation. Th
evidence for self-similarity is complemented by visu
checks of the transformation.

If the motion is locally self-similarB also retrieves the
second derivatives at the center point, which serves as a
tional check on the numerics. Also the constraint detB51
can be applied to replace one coefficient. Larger time in
vals Dt have to leave the integrated result unchanged.
the error bars in Fig. 6 the following variations are unde
taken:W50.2, 0.3, 0.4, the weighting function to the fir
and 3/2 power, cutoff ofu at 20.65 and20.7. The deter-
minant constraint has been used to replace the first co
cient. This replacement reduces the error bars at late tim
g,
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